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ABSTRACT

In this report we present two alternate derivations of the
equations governing the thermodynamics for a simple model of fireball
rise and entrainment. These two derivations place emphasis on different
sets of thermodynamic variables. It is shown that, except for difference
in notation, the resulting equations governing the fireball thermo-
dynamics are identical. One of the reasons for presenting the two
different derivations is to clarify some of the differences and simi-
larities of work published by various authors in this area. Unlike the
work most recently published by us, there are some other treatments
where terms involving the time rate of change of the specific heat ratio
are neglected. We point out that these terms are as important as any of
the other terms in the equations governing the fireball thermodynamics
in the cases where (1) energy storage in internal degrees of freedom
is significant and (2) where energy transfer via dissociation and
association processes is significant.
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INTRODUCT 10M

In a previous rcport'we presented results of a computer code
designed to calculate the rise, entrainment, and chemistry of a nuclear
fireball. In that report we also presented derivations of, (1) the
equations of motion of the fireball rise, (2) the equations governing
the thermodynamics and (3) the equations governing the chemistry of the
fireball. We also presented a description of the computer code used
to intcgrate the coupled set of differential equations governing the
rise, thermodynamics and chemistry of the fireball during its rise

through the atmosphere.

In this report we shall re-derive the equations governing
the thermodynamics of the fireball using a different notation. The
notation used here is complementary to the notation used in Reference 1
in the sense that the two notations tend to place emphasis on different
physical quantitities in somewhat the same way as do the different sets
of thermodynamic variables in ordinary thermodynamics, which sets are

related to onc another by various Legendre transformations.

In Section 2 we review the derivation of the thermodynamic
equations given in Reference 1, in order to make clear the premises on
which that derivation was based. In Section 3 we present an analogous
derivation based on another thermodynamic notation which is that often
used in the descrirtion of high temperature air in cquilibriu;. This

3.4,
type of notation har been used by various authors in fircball calcula-

*
tions. In Section 4 we shall show that the equations derived in

Sections 2 and 3 are identical except for notation. In Section 4 we

also present some concluding remarks.

References 3, 4, and S are meant to be typical, not exhaustive.




2. REVIEW OF THE DERIVATION OF EQUATIONS GOVERNING THE
THERMODYNAMICS OF THE FIREBALL

In Feference 1 we presented a derivation of the equations
governing the thermodynamics of the fireball. This derivation was
based on scveral premises regarding the behavior of the fireball gas

during entrainment of cold air from the surrounding ambient atmosphere.

The first premisc is that the fircball gas is ‘n kinetic

cquilibrium although not, in genecral, in chemical equilibrium,

The sccond premise is that the pressure contributions of
the various chemical species is additive, i.e., that Dalton's law of
partial pressures is valid.

The third premise is that .he contributions to the interna)
energy of the fireball gas from cach of the chemical species is
additive.

The fourth premise is that the equations governing the
thermodynamics of the fircball during rise and entrainment, can be
derived by comnsideration of two infinitesimal processes. The first

infinitesimal process is the mixing of an increment of ambient air

e — e R

with the fircball at constant pressurc. The second infinitesimal
process is an adiabatic expansion of the fireball.

The first, second, and third premises allow us to express
the pressure and internal cnergy (refered to unit volume) of the

fireball gas and the ambient atmosphere in the form

p = zi"_nikT , Ef e %ni[fi(T) + Ci] (2.1)

P = %:njkTa p Ea = ‘)E_nj[fj(?‘a) + Cj] (2.2)




In Lqs.(2.1) and (2.2) the sum over i 1{is a sum cver the many chemical
species of the fireball while the sum over j is a sums over the few
chemical species of the surrounding ambient atmosphere. ny denotes

the aumber deusity (concentraticon) of the lth species, T the fire-
ball (kinetic) temperature, Ta the temperature of the ambient
atmosphere, k PBRolt:mann's constant, fi(T) the temperature dependence

of the internal encrgy contribution of the ith

heat of formation of the 1" specics.

species and Ci the

In Eqs.(2.1) and (2.2) the pressures of the fireball and the
ambient atmosphere are the same, corresponding to pressure cquilibrium

of the fireball with the ambient atmosphere.

In Reference | we combined the two infinitesimal processes
mentioned above and derived the equations which govern the thermo-
dynamics of the fircball. To avoid any confusion that might arise
in the reader's mind about the effects arising from cach of the
processes we shall here consider cach process scparately and show that

the same results are obtained.

We first consider the process of mixing at constant pressure
a mass AM of ambient air with the firebail gas. We can associate a

volume AVa of the ambient air parcel and we have

]
oV, = =
a O‘
where
» N,
P, ):uJ j

i




In iq.(2.9) 0, represents the density of amtient air and u’ the

molecular weight of the ;‘h species. For the constant pressure
process we have

i » XY x o N 1 % %
Prinal T (Ve VDL e DA BT e GGy

r'innhl . \-}’_‘n‘[f‘(T) . C‘) . M"},_'n,(f,(T.) . C’)

(2.6)
Yeinal Ve av, (2.7)
] . 1 4 b ]
Vinitial RS R (2.8)

In Eqs.(2.5) - (2.8), E denotes the total internal energy of the
fireball, AV, the change in fireball volume, An; the change in
species concentrations, and AT, the change in the fireball tempera-
ture. The constant pressure process is one in which no heat is added
tc the thermodynamic system consisting of the fireball and the ambient
air parcel of mass (M. Thus, the first law of thermodynamics yields

= dQ = p(V + ¥ . E . 2.
0= 8= p0Vpinst = Yinitiat!) * Primel © Binitiad (2.9)

Ke substitute the expressions (2.5) - (2.8) into £q.(2.9) and keep
through first order infinitesimals. The result is

~ of
Vip ¢ X o (£,4C,)) » VE&nl(F,eC,) + VEn b aT,
i i i

AM 3
. 3: lp %—n,(f,(T,) ¢ Cj)l (2.10)

where fi and df‘/dT arc evaluated at T. The equation of state
yields

i

opy = 0 = ZAn'chZnikATl (2.11)
i i
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Eqs. (2.10) and (2.11) contain the information obtained by the consi-
deration of the infinitesimal process of mixing at constant pressure.

We now consider the sccond process of adiabatic expansion
of the firchall. We have

Eginag = (V+ 4V1 + AV;) )1: (n; + Ani' B Ani’)[fi('r + ATy + 8T3) + C,]

(2.12)
Einitial = (V + AV]) % (l‘ll + An:)[fl(T + AT;) + Ci] (2.13)
Vfinal = V + AV + AV, (2.14)
Vinitia1 =V * i (2.15)

where the subscript 2 and superscript 2 refer to the adiabatic expansion

process. The first law of thermodynamics becomes, for this adiabatic process

0 = 4 = P0V¢ina) - Vinitiar) * Bfinal - Einitial £2.16)

Substituting Eqs.(2.12) - (2.15) into Eq.(2.16) and making use of
Eq. (2.10), we obtain

df

2 i
ava(p ’zi:"i(fi + ci)] + V?Ani (t‘i + Ci) - Vzi: n, TITM’ =0
(2.17)
The equation of state yields
P*dpz = Z(n; +8n'+dn?)k (T+ AT +4Ty) (2.18)
i
or with Eq.(2.11)
Bp; = T An KT + ¥ n kAT, (2.19)
i ! il
Eqs.(2.17) and (2.19) constitute the information provided by the
adiabatic expansion process.
5



Adding Eqs.(2.11) and (2.19) and noting
bn, = on'+tn? , AT = AT, ¢ 4T, (2.20)

we obtain the diffcerential form of

p = %nikT (2.21)

i.e., the equation of state. Adding Egs.(2.10) and (2.17) and noting

av = AV, + AV, , (2.22)
the Eq. (2.4) and
R LY (2.25)
we obtain
dn. df .
. ldv i idT
O va e T« CII v LG (f + ) +Xmy g7 G¢
<
=Bt
1 dMf i =
w5 [p+Xn.(f +C.)l (2.24)
13, (. ) ) )
)_.anj J
)

Eq. (2.24) is identical with Eq.(3-45) of Reference 1.

Eq.(2.21) and (2.24), which govern the thermodynamics of the
fireball, are identical with those obtaincd by combining the two in-
finitesimal processes (as was done in the derivation given in Reference

1). Since combining the processes shortens the derivation we shall

treat the problem that way in the following section.




3. ALTERNATE DERIVATION OF THE THERMODYNAMICAL EQUATIONS

In this section we shall derive the cquations governing the
thermodynamics of the fireball, using a different notation than that
of the previous section. In this notation we write the equation of

statc in the form

pv = 2 (ﬁ%) RT = NRT (3.1)

where Z is the number of moles of air at temperature T per mole

of air at STP at sca level. V is the volume of the fireball, M

the mass of the fireball, T the temperature of the fireball, R

the universal gas constant, mp the gram-molecular-mass of STP air

at sca level, and N the number of moles in the firchall, tq.(3.1)

is an cquation of state for a real (as distinct from an idecal) gas and
therefore the quantitics Z and N arc not constant but vary when dis-

sociation and association processes occur. The gas constant 1s given by
R = AKX (3.2)

where A is Avogadro's number and ks Boltzmann's constant. The

gram-molecular-mass is given by

. (3.3)
m = A,
0 lJ
where E} is the average molecular mass associated with STP air at
sca level,
We write the internal energy of the fireball in the form
E = NCV(T)T (3.4)
where the number of moles of gas in the fireball is given by
M
N = 2 = VZ (p/mo) (3.5)
The enthalpy, 1, of the fireball is written
H = E+pv = NCP(T)T (3.6)




\
not the specific heats per mole as they would be conventionally defined

Note that the guantities €. and Cp of Egs.(3.4) and (5.0) arc

in thermodynamics. 1n the con.ventional sensc,

R A}

where Cv', Cp' are the specific heats per mole’ We shall find it

convenient in what follows to define a quantity
Y = € (M/C(M (3.8)

where Cp, CV arc defined by Eqs. (3.4) and (3.6). T e conventional

specific heat ratio Y', on the other hand, is given by y' = Cp'/Cv'.

We now consider the combined infinitesimal process of adding,
at constant pressure, a parcel of ambient air of mass, AM, to the fireball

and then expanding the fireball adiabatically. From Eq.(3.1) we obtain

- R R L1
bp = Az(ag)rp . Z(mo)ATp 2 Z(mo)TAp (3.9)

The initial internal cnergy of the system consisting of the fireball and

the ambient air parcel is

B, it NCy(T)T + AN C\ (T)T, | (3.10)

where

AM
ANa = Za(a-o-) = ZaAVa(pa/mo) (3.11)




The final internal encrgy is

Efxnnl = (N +« AN) CV (T + AT)(T + AT) (3.12)
The initial and f.aal volumes of the system are

Yiaiam & Vo4V, (3.13)

! = !
Ve V o+ AV (3.14)

The first law of thermodynamics for this adiabatic process is

i = R : -k 2
¢ 2 & p(Vfinal \initial) * l'final Linitinl (315
We substitute Eqs.(3.10), (3.12), (3.13) and (3.14) into Eq.(3.15) and
Keep through first order in infinitesimals. The result is
de
p(av - Ava) + ANCVT + Ny I T + Cv]AT = ANacv(Ta)Ta (3.16)
Eq. (3.9) can be rewritten (using Eq. (3.1))
ApV + pAV = ANRT + NRAT (3.17)
Multiplying Eq.(3.17) by CV(T)/R and subtracting the result from
Eq. (3.16) we obtain
Cv de
p(av - Ava) v (LpV + pAV) + N i TAT = ANaCV(Ta)Ta (3.18)
We now introduce the quantity
Cv + R
Y = C (3.19)
%
and note that since p = M/V, we also have
&M b S
vV = M (- 80)




With these relations, Eq. (3.11) and the relation

CV(Tn) + R

YZ'I = ———C—(rﬂ)— (3.21)

*
we find that Lq.(3.18) becomes

do _ 1 1dp 1dM ] - (Y -1 (Iﬂ) Eﬂzﬂ Jldy 1 (3.22)
dt Y pdt  Mdt Y. - I\¥ T Yydt (y - 1) ’

d

hed Lo

This cquation and Eq. (3.1), which we write in the form,

- z(_“_) oT (3.23)

mo
are thc analogues of Lqs.(2.24) and (2.21) of the previous scction.

Eqs.(3.22) and (3.23) govern the thermodynamic behavior of the fireball.

Alternate forms of Eqs.(3.22) and (3.23) can bc used instead
but such alt:rnate sects of two equations for the the.modynamic behavior

must be cquivalent to Egs. (3.22) and (3.23).

Note the presence of the last term on the right hand side of
Eq.(3.22) involving the time derivative of the quantity .
As wc shall sce in the following section, this term is of the
same size as the other terms appearing in Eq.(3.22).

10




4. CQUIVALENCE OF THE EQUATIONS GOVERNING THE THERMODYNAMICAL
BEHAVIOR OF THE FIREBALL

In this section we shall show that the set of lLqgs. (2.21)
and (2.24) is identical, except for notation, with the set yiven by
Eqs.(3.22) and (3.23). For this purpose we find it convenient to re-
introduce the variables M, V in place of p in Eq.(3.22). From

Eqs.(3.20) and (3.22) we obtain

‘\ - Y Z T
l1dv 1 1dp 1dM/y-1\"a) "aa Loy i (4.1)
Vdt Y pdt Mdt ya-l Y 27 Yy dt {y-1)

A (4.2)
From Eqs.(2.1) and (3.4)

NC,T = v?ni(fi (T) + Ci) (4.3)
and substituting for N from Eq.(4.2) we get

P n, (fi + Ci)

i

(M = A AT (4.4)
- i
i
From Eq.(3.1) and the analogous equatior for the ambient atmosphere
. (& . % (R
P2 (m) BT om oz, () e, il

11




or

Rl el m e 4.
j 4

The last form oi Eq.(4.0) follows from the rclation (2.4) and an

analogous relation for p.

It is convenient to use the notation of Eqs.(2.1) and (2.2),
and in the following we drop the subscript f from the internal energy
per unit volume, Ef, of the firecball. The cquations of state (2.21)
and (3.1) are obviously identical if we make the identification (4.2).

Using Eqs.(4.2), (3.3) and (3.5) we obtain

v Lo
1

z I (4.7)

1

It remains to show that Eqs.(2.24) and (4.1) are identical. With the
notation of Fqs.(2.1) and (2.2) we can write Eq.(2.25) in the form

. 14V y « E 1M p .
0 vac P+ B) ¢+ 5 (p+E) (4.8)

From Eq.(4.4) we have

=

: . E - - " :
cv(1) = Ak F . Cp(T) Cv + R Ak (1 +E/p) (4.9)
Thus
p+E P Ea
Y B EETs Y, 2% (4.10)

12




and therefore

: dp . _ dE
_lav o Pk, L Foag? (4.12)
Mot Pg \ P*E p (p+h)

The second term on the right-hand-side is cancelled by the first member

of the last term on the right-hand-side and we obtain

E
1 qv 1 _dE 1 dM p (M5
va * PO dt " §at -(:<_P*’3 (4.13)

which is identical with £q.(4.8). This concludes the demonstration of
equivalence.

Finally we remark that the last term on the right-hand-side
of 1iq.(4.12) is, in general, of the same magnitude as the other terms
in Eq.(4.12). Thc last term ariscs from the term involving dy/dt in
£q.(4.1). This term is cvidently neglected in some other trcatmcnzé of
the firchall thermodynamics. The last term in L£q.(4.12) vanishes in
the case of an ideal gas, where

NRT
e B

In this case we have

-




s0 that

(4.17)

The treatment presented in the previous sections assumes that the fire-
hall and ambient atmosphere gases have two properties in common with an
ideal gas. These properties are (1) that the contributions to the
pressure from the various species are additive and (2) that the contri-
butions to the internal energy from the various species are additive.

Fror th: point of view of a microscopic picture embodied in a statisti-

cal rechanics description, these assumptions about the bulk properties

of the gas are tantamount to the assumptions (1) that the behavior of
the gas can be characterized in terms of a temperature and (2) that

at constant temperature and species concentration (i.e., when therc are
no chzmical rcactions) the interactions among unbound particles
(potential cnergy associated with interactions) make a negligible con-
tribution to the internal energy compared with the energy associated
with the kinetic and internal degrees of freedom of the particles of

which the gas is composed.

On the other hand, the treatment assumes (A) that the con-
tribution to the internal energy from the internal degrees of freedom
of the various species is important and (B) that the change in the
internal energy of the gas duve to changes in the species concentrations
is an important cffect. The kiaetic energy released when recombination
takes place and the kinetic energy absorbed when dissociation occurs
provide important encrgy transfer mechanisms. Suffice it to say that
the last term on the right-hand side of Eq. (4.12) makes an important
contribution to hoth cffects (A) and (B).
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